

Axium™ MicroFX™

Axium PGLA & Axium Nylon
Detachable Coil System

No compromise.

No Compromise.

Axium™ MicroFX™ which features the unique LatticeFX™ Technology is designed to enhance tissue response in an aneurysm without sacrificing the delivery or packing performance of the coil.

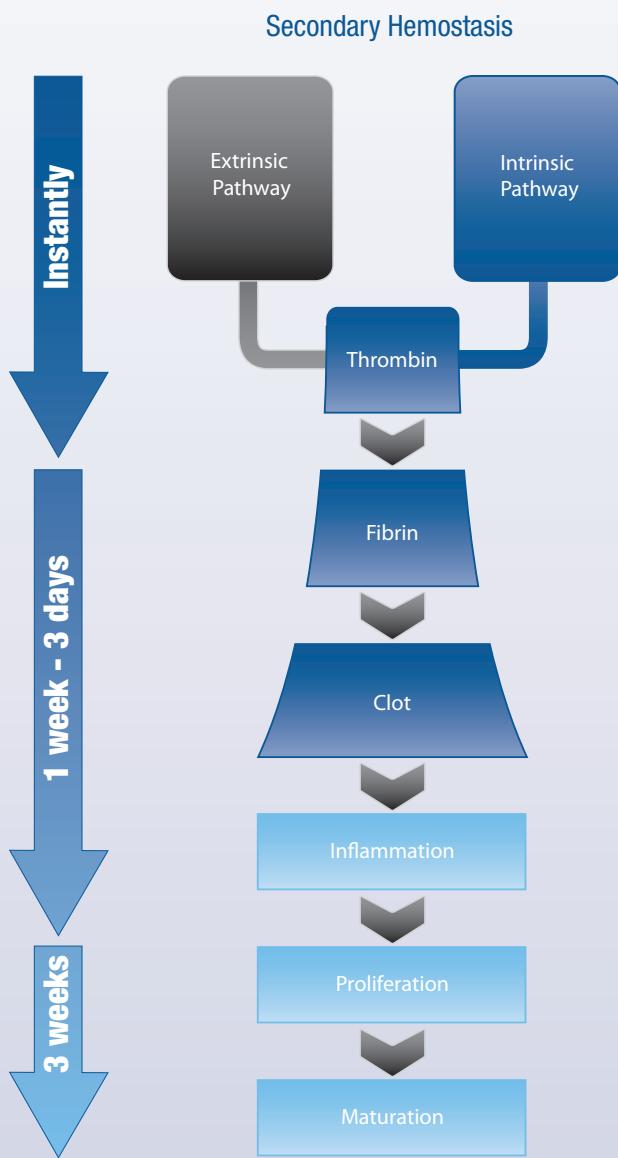
► LatticeFX™ Technology

- The LatticeFX or scaffolding serves to orient cell adhesion and extracellular deposition.¹
- Proper orientation of fibrin serves to enhance cell attachment and migration during wound healing.^{3/4}

Cross-Neck Flow: PGLA and Bare Study¹

► High Packing Density

- High packing density and interlocked intra-aneurysmal surface area may reduce flow and potentially favor early hemostasis.


► Configurations

- Axium MicroFX comes in two configurations: PGLA and Nylon. The microfilaments are enlaced through the coil to ensure they are secure and to maintain the packing volume of the coil.

Wound Healing Process

Healing is the interaction of a complex cascade of cellular events. The healing process begins with coagulation almost instantly after injury to a blood vessel that has damaged the endothelium. Platelets immediately form a plug at the site of injury. This is called primary hemostasis. Secondary hemostasis occurs simultaneously: Proteins in the blood plasma respond in a complex cascade to form fibrin strands, which strengthen the platelet plug.

Following clot formation, the healing process is traditionally explained in terms of 3 classic phases: inflammation, proliferation, and maturation.

► Intrinsic Coagulation

The initiation of the intrinsic coagulation process is enhanced through contact and absorption of blood proteins with a non-endothelial surface.

► Critical Elements

The degree of surface roughness and blood absorption is a critical element in determining how a material stimulates the initiation of the intrinsic pathway.

► Variations

Variation in human physiology and blood chemistry can influence the degree of interaction.

► Inflammation Phase

In this phase, bacteria and debris are phagocytized and removed as cells migrate to the wound in preparation of the Proliferation Phase.

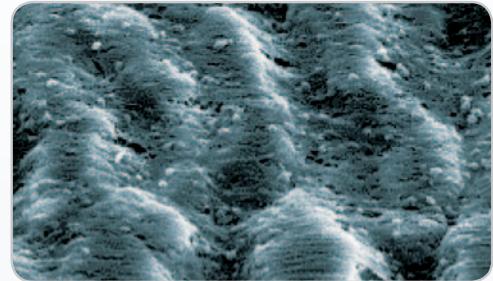
► Proliferation Phase

Here the initial formation of granulation tissue by fibroblast, collagen and other cells begins.

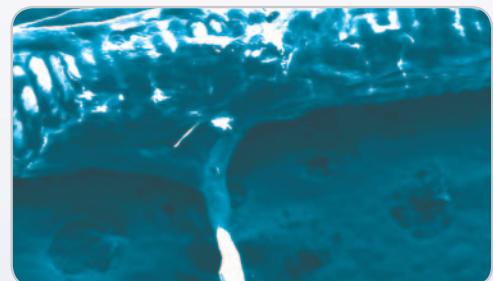
► Maturation Phase

During the maturation phase, collagen becomes increasingly organized.

Axium™ MicroFX™ Configurations



› Axium PGLA Detachable Coil System


Axium PGLA utilizes a PGLA microfilament that has the potential for accelerated thrombus organization and intra-aneurysmal fibrosis before being absorbed by the body.

Blood interactions which lead to coagulation are dependent on the surface properties of the material. Rough surfaces lend themselves to a higher rate of coagulation, and therefore better thrombogenicity.²

- The chemical structure of PGLA creates a mixed, or 'rough' surface.⁵
- The main contributor of roughness in PGLA is the lactic acid chain that creates an alternating pattern of surfaces (like sandpaper).^{6/7}
- In contrast, because PGA only includes a glycolic acid component, PGA presents with less rough surface and therefore is less prone than PGLA to induce higher rate of coagulation.^{6/7}
- During the proliferation phase the PGLA LatticeFX serves to orient cell adhesion and extracellular deposition.

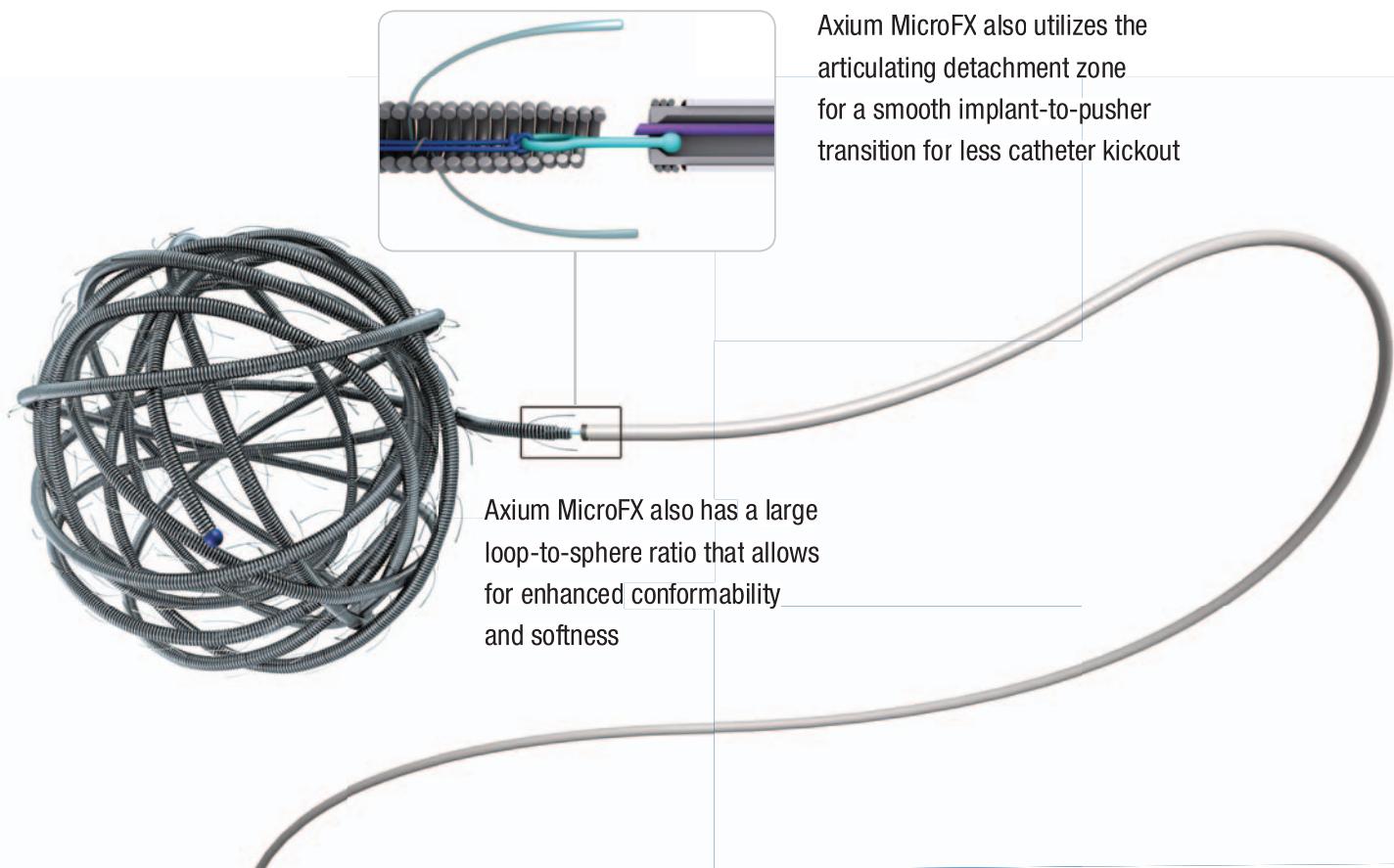
Scanning electron micrographs of PGLA surface

SEM image of a Axium MicroFX PGLA coil exposed to freshly drawn bovine blood (with 5 units heparin/mL) for one hour

› Axium Nylon Detachable Coil System

Axium Nylon utilizes a nylon microfilament which is a non-absorbable material that presents with higher potential for more durable and complete thrombosis.

- Compared to PGLA or PGA, nylon is a more durable material as it is a non-absorbable material which will lead to a more structurally sound lattice effect.⁸
- Proper orientation of fibrin serves to enhance cell attachment and migration during wound healing process.^{3/4}



VIS image of nylon microfilaments exposed to freshly drawn bovine blood (5 units heparin/ml) for one hour

When Axium Nylon is used in conjunction with Axium PGLA, an ideal environment is potentially created for accelerated and durable thrombus formation.


No Compromise to Bare Performance

Axium MicroFX provides the acute performance of an Axium Bare Coil with the added benefit of LatticeFX.

Bringing Softness, Stability and Volume Together

The progressive coil diameter gives a comprehensive coil line that covers all softness grades and sizing needs while providing enhanced packing volume. The system offers the optimal balance between softness of a "10" coil and stability/volume of an "18" coil.

Axium™ PGLA and Axium™ Nylon Detachable Coil System

Axium 3D PGLA			
Order Number	D(mm)	L(cm)	O.D.(in)
PC-2-2-3D	2	2	0.0115
PC-2-4-3D	2	4	0.0115
PC-2-6-3D	2	6	0.0115
PC-3-4-3D	3	4	0.0115
PC-3-6-3D	3	6	0.0115
PC-3-8-3D	3	8	0.0115
PC-4-8-3D	4	8	0.0125
PC-4-12-3D	4	12	0.0125
PC-5-10-3D	5	10	0.0125
PC-5-15-3D	5	15	0.0125
PC-6-15-3D	6	15	0.0125
PC-6-20-3D	6	20	0.0125
PC-7-20-3D	7	20	0.0135
PC-7-30-3D	7	30	0.0135
PC-8-20-3D	8	20	0.0135
PC-8-30-3D	8	30	0.0135
PC-9-20-3D	9	20	0.0135
PC-9-30-3D	9	30	0.0135
PC-10-20-3D	10	20	0.0135
PC-10-30-3D	10	30	0.0135

Axium Helix PGLA			
Order Number	D(mm)	L(cm)	O.D. (in)
PC-2-1-HELIX	2	1	0.0115
PC-2-2-HELIX	2	2	0.0115
PC-2-3-HELIX	2	3	0.0115
PC-2-4-HELIX	2	4	0.0115
PC-2-6-HELIX	2	6	0.0115
PC-2-8-HELIX	2	8	0.0115
PC-3-4-HELIX	3	4	0.0115
PC-3-6-HELIX	3	6	0.0115
PC-3-8-HELIX	3	8	0.0115
PC-4-8-HELIX	4	8	0.0125
PC-4-10-HELIX	4	10	0.0125
PC-4-12-HELIX	4	12	0.0125
PC-5-15-HELIX	5	15	0.0125
PC-5-20-HELIX	5	20	0.0125
PC-6-20-HELIX	6	20	0.0125
PC-7-30-HELIX	7	30	0.0135
PC-8-30-HELIX	8	30	0.0135
PC-9-30-HELIX	9	30	0.0135
PC-10-30-HELIX	10	30	0.0135

Axium Helix Nylon			
Order Number	D(mm)	L(cm)	O.D.(in)
NC-2-1-HELIX	2	1	0.0115
NC-2-2-HELIX	2	2	0.0115
NC-2-3-HELIX	2	3	0.0115
NC-2-4-HELIX	2	4	0.0115
NC-2-6-HELIX	2	6	0.0115
NC-2-8-HELIX	2	8	0.0115
NC-3-4-HELIX	3	4	0.0115
NC-3-6-HELIX	3	6	0.0115
NC-3-8-HELIX	3	8	0.0115
NC-4-8-HELIX	4	8	0.0125
NC-4-10-HELIX	4	10	0.0125

Instant Detacher

Order Number

ID-1-5

All Axium MicroFX PGLA & Nylon are able to accommodate microcatheters with ID>0.0165".

Indications, contraindications, warnings, and instructions for use can be found in the product labeling supplied with each device.
CAUTION: Federal (USA) law restricts this device to sale by or on the order of a physician.

1. In-vitro experimentation in two 4 mm wide-neck bifurcation aneurysm models, one coiled with Axium Bare and the other with Axium MicroFX. Performed by Prof. David H. Frakes, PhD, Assistant Professor, and Haithem Babiker, *School of Biological and Health Systems Engineering School of Electrical, Computer, and Energy Engineering* Arizona State University, in collaboration with Dr. Fernando Gonzales at the *Keller Center for Imaging Innovation*, Barrow Neurological Institute.
2. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly (D,L-lactic-co-glycolic acid) meshes. *Biomaterials*, 2006;27(33):5681-5688. Bashur, et.al.
3. The Behavior of Human Mesenchymal Stem Cell in 3D Fibrin Clots. *Tissue Engineering*, 2006; 12(6): 1587-1595. Ho W, et al.
4. Fibrin Microthreads Promote Stem Cell Growth for Localized Delivery in Regenerative Therapy. MS Thesis, Worcester Polytechnic Institute 2008. M Murphy.
5. Plasma coagulation response to surfaces with nanoscale chemical heterogeneity. *Biomaterials* 2006; 27(2): 208-215.
6. Surface characteristics of PLA and PGA films. *Applied Surface Science* 2006; 253(5): 2758-2764.
7. Enhanced cell affinity of poly (D,L-lactide) by combining plasma treatment with collagen anchorage. *Biomaterials* 2002; 23: 2607-2614, Yang et. al.
8. Electrospun nitrocellulose and nylon. *J of Biological Engineering*. 10 OCT 2007 Volume 1, Issue 2. Manis et.al.

NEUROVASCULAR | PERIPHERAL VASCULAR

Access · Balloons · Carotid · **Embolic Coils** · Embolic Protection · Liquid Embolics · Plaque Excision · Procedural Support · Retrieval Devices · Stents

ev3 Corporate

World Headquarters

Peripheral Vascular

3033 Campus Drive

Plymouth, MN 55441

USA

PH +1 763 398 7000

FX +1 763 398 7001

Cust Svc +1 800 716 6700

www.ev3.net

ev3 Neurovascular

9775 Toledo Way

Irvine, CA 92618

USA

PH +1 949 837 3700

FX +1 949 837 2044

ev3 Europe

International Headquarters

106-108 rue La Boétie

75008 Paris

France

PH +33 156 88 59 10

FX +33 156 88 59 11

